Logarithmic integral function

From Academic Kids

In mathematics, the logarithmic integral function or integral logarithm li(x) is a non-elementary function defined for all positive real numbers x≠ 1 by the definite integral:

<math> {\rm li} (x) = \int_{0}^{x} \frac{dt}{\ln (t)} \; . <math>

Here, ln denotes the natural logarithm. The function 1/ln (t) has a singularity at t = 1, and the integral for x > 1 has to be interpreted as a Cauchy principal value:

<math> {\rm li} (x) = \lim_{\varepsilon \to 0} \left( \int_{0}^{1-\varepsilon} \frac{dt}{\ln (t)} + \int_{1+\varepsilon}^{x} \frac{dt}{\ln (t)} \right) \; . <math>

Sometimes instead of li the offset logarithmic integral is used, defined as <math>{\rm Li}(x) = {\rm li}(x) - {\rm li}(2)<math>. This is often used in number theoretic applications. Neither function should be confused with the logarithmic integral whose definition is

<math>\int_{-\infty}^\infty \frac{M(t)}{1+t^2}dt<math>.

The growth behavior of this function for x → ∞ is

<math> {\rm li} (x) = \Theta \left( {x\over \ln (x)} \right) \; . <math>

(see big O notation).

The logarithmic integral finds application in many areas, in particular it is used is in estimates of prime number densities, such as the prime number theorem:

π(x) ~ li(x) ~ Li(x)

where π(x) denotes the number of primes smaller than or equal to x.

The function li(x) is related to the exponential integral Ei(x) via the equation

li(x) = Ei (ln (x))    for all positive real x ≠ 1.

This leads to series expansions of li(x), for instance:

<math> {\rm li} (e^{u}) = \gamma + \ln \left| (u) \right| + \sum_{n=1}^{\infty} {u^{n}\over n \cdot n!} \quad {\rm for} \; u \ne 0 \; , <math>

where γ ≈ 0.57721 56649 01532 ... is the Euler-Mascheroni gamma constant. The function li(x) has a single positive zero; it occurs at x ≈ 1.45136 92348 ...; this number is known as the Ramanujan-Soldner constant.

See also

sl:logaritemski integral

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools