# Rotation operator

This article concerns the rotation operator, as it appears in quantum mechanics.

## The translation operator

The rotation operator R(z, t), with the first argument z indicating the rotation axis and the second t = θ the rotation angle, is based on the translation operator T(a), which is acting on the state |x in the following manner:

T(a)|x = |x + a

We have:

T(0) = 1
T(a) T(da)|x = T(a)|x + da = |x + a + da = T(a + da)|x
T(a) T(da) = T(a + da)

Taylor developement gives:

T(da) = T(0) + dT/da(0) da + ... = 1 - i/h px da with px = i h dT/da(0)

From that follows:

T(a + da) = T(a) T(da) = T(a)(1 - i/h px da) ⇒
[T(a + da) - T(a)]/da = dT/da = - i/h px T(a)

This is a differential equation with the solution T(a) = exp(- i/h px a).

Additionally, suppose a Hamiltonian H is independent of the x position. Because the translation operator can be written in terms of px, and [px,H]=0, we know that [H,T(a)]=0. This result means that linear momentum for the system is conserved.

## The rotation operator related to the orbital angular momentum

Classically we have l = r x p. This is the same in QM considering r and p as operators. An infinitesimal rotation dt about the z-axis can be expressed by the following infinitesimal translations:

x' = x - y dt
y' = y + x dt

From that follows:

R(z, dt)|r = R(z, dt)|x, y, z = |x - y dt, y + x dt, z = Tx(-y dt) Ty(x dt)|x, y, z = Tx(-y dt) Ty(x dt)|r

And consequently:

R(z, dt) = Tx(-y dt) Ty(x dt)

Using Tk(a) = exp(- i/h pk a) with k = x,y and Taylor developement we get:

R(z, dt) = exp[- i/h (x py - y px) dt] = exp(- i/h lz dt) = 1 - i/h lz dt + ...

To get a rotation for the angle t, we construct the following differential equation using the condition R(z, 0) = 1:

R(z, t + dt) = R(z, t) R(z, dt) ⇒
[R(z, t + dt) - R(z, t)]/dt = dR/dt = R(z, t) [R(z, dt) - 1]/dt = - i/h lz R(z, t) ⇒
R(z, t) = exp(- i/h t lz)

Similar to the translation operator, if we are given a Hamiltonian H which rotationally symmetric about the z axis, [lz,H]=0 implies [R(z,t),H]=0. This result means that angular momentum is conserved.

For the spin angular momentum about the y-axis we just replace lz with sy = h/2 σy and we get the spin rotation operator D(y, t) = exp(- i t/2 σy).

## The effect of the rotation operator on the spin operator and on states

Operators can be exprimed by matrices. From linear algebra one knows that a certain matrix A can be exprimed in another base through the basis transformation

A' = P A P-1

where P is the transformation matrix. If b and c are perpendicular to the y-axis and the angle t lies between them, the spin operator Sb can be transformed into the spin operator Sc through the following transformation:

Sc = D(y, t) Sb D-1(y, t)

From standard QM we have the known results Sb |b+ = h/2 |b+ and Sc |c+ = h/2 |c+. So we have:

h/2 |c+ = Sc |c+ = D(y, t) Sb D-1(y, t) |c+
Sb D-1(y, t) |c+ = h/2 D-1(y, t) |c+

Comparison with Sb |b+ = h/2 |b+ yields |b+ = D-1(y, t) |c+.

This can be generalized to arbitrary axes.

##### Navigation

Academic Kids Menu

• Art and Cultures
• Art (http://www.academickids.com/encyclopedia/index.php/Art)
• Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
• Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
• Music (http://www.academickids.com/encyclopedia/index.php/Music)
• Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
• Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
• Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
• Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
• Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
• Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
• Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
• Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
• History (http://www.academickids.com/encyclopedia/index.php/History)
• Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
• Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
• Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
• Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
• Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• United States (http://www.academickids.com/encyclopedia/index.php/United_States)
• Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
• World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
• Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
• Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
• Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
• Science (http://www.academickids.com/encyclopedia/index.php/Science)
• Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
• Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
• Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
• Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
• Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
• Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
• Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
• Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
• Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
• Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
• Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
• Government (http://www.academickids.com/encyclopedia/index.php/Government)
• Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
• Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
• Space and Astronomy
• Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
• Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
• Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
• US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

• Home Page (http://academickids.com/encyclopedia/index.php)
• Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

• Clip Art (http://classroomclipart.com)