Bilinear form

From Academic Kids

In mathematics, a bilinear form on a vector space V over a field F is a mapping V × VF which is linear in both arguments. That is, B : V × VF is bilinear if the maps

<math>w \mapsto B(v, w)<math>
<math>w \mapsto B(w, v)<math>

are linear for each v in V. This definition applies equally well to modules over a commutative ring with linear maps being module homomorphisms.

Note that a bilinear form is a special case of a bilinear operator.

When F is the field of complex numbers C one is often more interested in sesquilinear forms. These are similiar to bilinear forms but are conjugate linear in one argument instead of linear.

Contents

Coordinate representation

If V is finite-dimensional with dimension n then any bilinear form B on V can represented in coordinates by a matrix B relative to some ordered basis {ei} for V. The components of the matrix B are given by <math>B_{ij} = B(e_i,e_j)<math>. The action of the bilinear form on vectors u and v is then given by matrix multiplication:

<math>B(u,v) = \mathbf{u}^T \mathbf{Bv} = \sum_{i,j=1}^{n}B_{ij}u^i v^j<math>

where ui and vj are the components of u and v in this basis.

Maps to the dual space

Every bilinear form B on V defines a pair of linear maps from V to its dual space V*. Define <math>B_1,B_2\colon V \to V^*<math> by

<math>B_1(v)(w) = B(v,w)<math>
<math>B_2(v)(w) = B(w,v)<math>

This is often denoted as

<math>B_1(v) = B(v,{-})<math>
<math>B_2(v) = B({-},v)<math>

where the (–) indicates the slot into which the argument is to be placed.

If V is finite-dimensional then one can identify V with its double dual V**. One can then show that B2 is the transpose of the linear map B1 (if V is infinite-dimensional then B2 is the transpose of B1 restricted to the image of V in V**). Given B one can define the transpose of B to be the bilinear form given by

<math>B^*(v,w) = B(w,v).<math>

If V is finite-dimensional then the rank of B1 is equal to the rank of B2. If this number is equal to the dimension of V then B1 and B2 are linear isomorphisms from V to V*. In this case B is said to be nondegenerate.

Given any linear map A : VV* one can bilinear form B on V via

<math>B(v,w) = A(v)(w)<math>

This form will be nondegenerate iff A is an isomorphism.

Symmetry

A bilinear form B : V × VF is said to be:

  • symmetric if <math>B(v,w)=B(w,v)<math> for all <math>v,w\in V<math>
  • skew-symmetric if <math>B(v,w)=-B(w,v)<math> for all <math>v,w\in V<math>
  • alternating if <math>B(v,v)=0<math> for all <math>v\in V<math>

Every alternating form is skew-symmetric; this may be seen by expanding

B(v+w,v+w).

If the characteristic of F is not 2 then the converse is also true (every skew-symmetric form is alternating). If, however, char(F) = 2 then a skew-symmetric form is the same thing as a symmetric form and not all of these are alternating.

A bilinear form is symmetric (resp. skew-symmetric) iff its coordinate matrix (relative to any basis) is symmetric (resp. skew-symmetric). A bilinear form is alternating iff its coordinate matrix is skew-symmetric and the diagonal entries are all zero (which follows from skew-symmetry when char(F) ≠ 2).

A bilinear form is symmetric iff the maps <math>B_1,B_2\colon V \to V^*<math> are equal, and skew-symmetric iff they are negatives of one another. If char(F) ≠ 2 then one can always decompose a bilinear form into a symmetric and an skew-symmetric part as follows

<math>B^{\pm} = {1\over 2}(B \pm B^*)<math>

where B* is the transpose of B (defined above).

Relation to tensor products

By the universal property of the tensor product, bilinear forms on V are in 1-to-1 correspondence with linear maps VVF. If B is a bilinear form on V the corresponding linear map is given by

<math>v\otimes w\mapsto B(v,w).<math>

The set of all linear maps VVF is the dual space of VV, so bilinear forms may be thought of as elements of

<math>(V\otimes V)^{*} \cong V^{*}\otimes V^{*}.<math>

Likewise, symmetric bilinear forms may be thought of as elements of S2V* (the second symmetric power of V*), and alternating bilinear forms as elements of Λ2V* (the second exterior power of V*).

See also

External links

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools