Conjugate transpose

From Academic Kids

In mathematics, the conjugate transpose of an m-by-n matrix A with complex entries is the n-by-m matrix A* obtained from A by taking the transpose and then taking the complex conjugate of each entry. Formally

<math>(A^*)[i,j] = \overline{A[j,i]}<math>

for 1 ≤ in and 1 ≤ jm.

Alternative names for the conjugate transpose of a matrix are adjoint matrix, Hermitian conjugate, or tranjugate. The conjugate transpose of a matrix A can be denoted by any of these symbols:

<math>A^*, A^H, \mbox{ or } A^\dagger\,. <math>
Contents

Example

If

<math>A=\begin{bmatrix}3+i&2\\

2-2i&i\end{bmatrix}<math> then

<math>A^*=\begin{bmatrix}3-i&2+2i\\

2&-i\end{bmatrix}.<math>

Basic remarks

If the entries of A are real, then A* coincides with the transpose AT of A. It is often useful to think of square complex matrices as "generalized complex numbers", and of the conjugate transpose as a generalization of complex conjugation.

A square matrix A is called

Even if A is not square, the two matrices A*A and AA* are both Hermitian and in fact positive semi-definite.

The adjoint matrix A* should not be confused with the adjugate adj(A) (which in older texts is also sometimes called "adjoint").

Properties of the conjugate transpose

  • (A + B)* = A* + B* for any two matrices A and B of the same format.
  • (rA)* = r*A* for any complex number r and any matrix A. Here r* refers to the complex conjugate of r.
  • (AB)* = B*A* for any m-by-n matrix A and any n-by-p matrix B. Note that the order of the factors is reversed.
  • (A*)* = A for any matrix A.
  • If A is a square matrix, then det (A*) = (det A)* and trace (A*) = (trace A)*
  • A is invertible if and only if A* is invertible, and in that case we have (A*)-1 = (A-1)*.
  • The eigenvalues of A* are the complex conjugates of the eigenvalues of A.
  • <Ax,y> = <x, A*y> for any m-by-n matrix A, any vector x in Cn and any vector y in Cm. Here <.,.> denotes the ordinary Euclidean inner product (or dot product) on Cm and Cn.

Generalizations

The last property given above shows that if one views A as a linear map from the Euclidean Hilbert space Cn to Cm, then the matrix A* corresponds to the adjoint operator of A. The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices.

Another generalization is available: suppose A is a linear map from a complex vector space V to another W, then the complex conjugate linear map as well as the transposed linear map are defined, and we may thus take the conjugate transpose of A to be the complex conjugate of the transpose of A. It maps the conjugate dual of W to the conjugate dual of V.

External links

ja:随伴行列

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools