Hypersphere

From Academic Kids

A hypersphere is a higher-dimensional analogue of a sphere. A hypersphere of radius R in n-dimensional Euclidean space consists of all points at distance R from a given fixed point (the centre of the hypersphere).

The "volume" it encloses is

<math>V_n={\pi^{n/2}R^n\over\Gamma(n/2+1)}<math>

where Γ is the gamma function.

The "surface area" of this hypersphere is

<math>S_n=\frac{dV_n}{dR}={2\pi^{n/2}R^{n-1}\over\Gamma(n/2)}<math>

The above hypersphere in n-dimensional Euclidean space is an example of an (n−1)-manifold. It is called an (n−1)-sphere and is denoted Sn−1. For example, an ordinary sphere in three dimensions is a 2-sphere.

The interior of a hypersphere, that is the set of all points whose distance from the centre is less than or equal to R, is called an hyperball.

Hyperspherical volume - some examples

For a unit sphere (<math> R = 1 <math> ) the volumes for some values of n are:

<math>V_1\,<math> = <math>2\,<math>    
<math>V_2\,<math> = <math>\pi\,<math> = <math>3.14159\ldots\,<math>
<math>V_3\,<math> = <math>\frac{4 \pi}{3}\,<math> = <math>4.18879\ldots\,<math>
<math>V_4\,<math> = <math>\frac{\pi^2}{2}\,<math> = <math>4.93480\ldots\,<math>
<math>V_5\,<math> = <math>\frac{8 \pi^2}{15}\,<math> = <math>5.26379\ldots\,<math>
<math>V_6\,<math> = <math>\frac{\pi^3}{6}\,<math> = <math>5.16771\ldots\,<math>
<math>V_7\,<math> = <math>\frac{16 \pi^3}{105}\,<math> = <math>4.72478\ldots\,<math>
<math>V_8\,<math> = <math>\frac{\pi^4}{24}\,<math> = <math>4.05871\ldots\,<math>

If the dimension, n, is not limited to integral values, the hypersphere volume is a continuous function of n with a global maximum for the unit sphere in dimension n  = 5.2569464... where the "volume" is 5.277768...

Hyperspherical coordinates

We may define a coordinate system in an n-dimensional Euclidean space which is analogous to the spherical coordinate system defined for 3-dimensional Euclidean space, in which the coordinates consist of a radial coordinate r, and n-1 angular coordinates {φ12...φn-1}. If xi are the Cartesian coordinates, then we may define

<math>x_1=r\cos(\phi_1)\,<math>
<math>x_2=r\sin(\phi_1)\cos(\phi_2)\,<math>
<math>x_3=r\sin(\phi_1)\sin(\phi_2)\cos(\phi_3)\,<math>
<math>\cdots\,<math>
<math>x_{n-1}=r\sin(\phi_1)\cdots\sin(\phi_{n-2})\cos(\phi_{n-1})\,<math>
<math>x_n~~\,=r\sin(\phi_1)\cdots\sin(\phi_{n-2})\sin(\phi_{n-1})\,<math>

The hyperspherical volume element will be found from the Jacobian of the transformation:

<math>d^nr =

\left|\det\frac{\partial (x_i)}{\partial(r,\phi_i)}\right| dr\,d\phi_1 \, d\phi_2\ldots d\phi_{n-1}<math>

<math>=r^{n-1}\sin^{n-2}(\phi_1)\sin^{n-3}(\phi_2)\cdots \sin(\phi_{n-2})\,

dr\,d\phi_1 \, d\phi_2\cdots d\phi_{n-1}<math>

and the above equation for the volume of the hypersphere can be recovered by integrating:

<math>V_n=\int_{r=0}^R \int_{\phi_1=0}^\pi

\cdots \int_{\phi_{n-2}=0}^\pi\int_{\phi_{n-1}=0}^{2\pi}d^nr. \,<math>

See also

it:Ipersfera

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools