PSPACE-complete

From Academic Kids

In complexity theory, PSPACE-complete is a complexity class. A decision problem is in PSPACE-complete if it is in PSPACE, and every problem in PSPACE can be reduced to it in polynomial time. The problems in PSPACE-complete can be thought of as the hardest problems in PSPACE. These problems are widely suspected to be outside of P and NP, but that is not known. It is known that they lie outside of NC.

The first known NP-complete problem was satisfiability (SAT). This is the problem of whether there are assignments of truth values to variables that make a boolean expression true. For example, one instance of SAT would be the question of whether the following is true:

<math>\exists x_1 \, \exists x_2 \, \exists x_3 \, \exists x_4: (x_1 \or \neg x_3 \or x_4) \and (\neg x_2 \or x_3 \or \neg x_4)<math>

The most basic PSPACE-complete problem is identical, except every other quantifier is a universal quantifier:

<math>\exists x_1 \, \forall x_2 \, \exists x_3 \, \forall x_4: (x_1 \or \neg x_3 \or x_4) \and (\neg x_2 \or x_3 \or \neg x_4)<math>

Notice that the NP-complete problem resembles a typical puzzle: is there some way to plug in values that solves the problem? The PSPACE-complete problem resembles a game: is there some move I can make, such that for all moves my opponent might make, there will then be some move I can make to win? The question alternates existential and universal quantifiers. Not surprisingly, many puzzles turn out to be NP-complete, and many games turn out to be PSPACE-complete.

Examples of games that are PSPACE-complete (when generalized so that they can be played on an n × n board) are the games hex and Reversi and the solitaire games Rush Hour, mahjong, Atomix and Sokoban. Some other generalized games, such as chess, checkers (draughts), and go are EXPTIME-complete because a game between two perfect players can be very long, so they are unlikely to be in PSPACE.

Note that the definition of PSPACE-complete is based on asymptotic complexity: the time it takes to solve a problem of size n, in the limit as n grows without bound. That means a game like checkers (which is played on an 8 × 8 board) could never be PSPACE-complete. That is why all the games were modified by playing them on an n × n board instead.

Another PSPACE-complete problem is the problem of deciding whether a given string is a member of the language defined by a given context-sensitive grammar.

External link


Important complexity classes (more)
P | NP | Co-NP | NP-C | Co-NP-C | NP-hard | UP | #P | #P-C | L | NC | P-C
PSPACE | PSPACE-C | EXPTIME | EXPSPACE | BQP | BPP | RP | ZPP | PCP | IP | PH
es:PSPACE-completo
Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools