Projection (linear algebra)

From Academic Kids

In linear algebra, a projection is a linear transformation P such that P2 = P, i.e., an idempotent transformation. A matrix is a projection if the transformation it represents is a projection. An m × m matrix projection maps an m-dimensional vector space onto a k-dimensional subspace (km). A special class of projections is the class of orthogonal projections, which are self-adjoint projections.

One such common projection is the projection of one vector in Rn onto another. For example, we can project the vector (1/2, 1/2)T onto the vector (0, 1)T, to get the vector (0, 1/2)T. We can describe in general the projection of one vector u onto another, v by

<math>\mathrm{proj}_{\mathbf{v}}\,\mathbf{u} = {\mathbf{v}\mathbf{\cdot}\mathbf{u}\over\mathbf{v}\mathbf{\cdot}\mathbf{v}}\mathbf{v}<math>

where the dot represents the dot product. Since an inner product generalizes the idea of a dot product, then we have the equivalent formulation for any general inner product space:

<math>\mathrm{proj}_{\mathbf{v}}\,\mathbf{u} = {\langle \mathbf{v}, \mathbf{u}\rangle\over\langle \mathbf{v}, \mathbf{v}\rangle}\mathbf{v}<math>

where <v1,v2> represents the inner product.

This projection is indeed a projection, observe:

<math>\mathrm{proj}_{\mathbf{w}}\,\mathbf{x}={\langle\mathbf{w},\mathbf{x}\rangle\over\langle\mathbf{w}, \mathbf{w}\rangle}\mathbf{w}<math>

by definition, then

<math>\mathrm{proj}_{\mathbf{w}}\,\left({\langle\mathbf{w},\mathbf{x}\rangle\over\langle\mathbf{w}, \mathbf{w}\rangle}\mathbf{w}\right)={\langle\mathbf{w},{\langle\mathbf{w},\mathbf{x}\rangle\over\langle\mathbf{w}, \mathbf{w}\rangle}\mathbf{w}\rangle\over\langle\mathbf{w}, \mathbf{w}\rangle}\mathbf{w}={{\langle\mathbf{w},\mathbf{x}\rangle\over\langle\mathbf{w}, \mathbf{w}\rangle}\langle\mathbf{w},\mathbf{w}\rangle\over\langle\mathbf{w}, \mathbf{w}\rangle}\mathbf{w}<math>
<math>={\langle\mathbf{w},\mathbf{x}\rangle\over\langle\mathbf{w}, \mathbf{w}\rangle}\mathbf{w}<math>

This projection is linear:

<math>\mathrm{proj}_{\mathbf{w}}\,({\alpha\mathbf{a}+\beta\mathbf{b}})

={\langle\mathbf{w},\alpha\mathbf{a}+\beta\mathbf{b}\rangle\over\langle\mathbf{w},\mathbf{w}\rangle}\mathbf{w} ={\langle\mathbf{w},\alpha\mathbf{a}\rangle\over\langle\mathbf{w},\mathbf{w}\rangle}\mathbf{w}+{\langle\mathbf{w},\beta\mathbf{b}\rangle\over\langle\mathbf{w},\mathbf{w}\rangle}\mathbf{w}<math>

<math>=\alpha{\langle\mathbf{w},\mathbf{a}\rangle\over\langle\mathbf{w},\mathbf{w}\rangle}\mathbf{w}+\beta{\langle\mathbf{w},\mathbf{b}\rangle\over\langle\mathbf{w},\mathbf{w}\rangle}\mathbf{w}

=\alpha\,\mathrm{proj}_{\mathbf{w}}\,\mathbf{a}+\beta\,\mathrm{proj}_{\mathbf{w}}\,\mathbf{b}<math> Projections (orthogonal and otherwise) play a major role in algorithms for certain linear algebra problems:

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools