Square number

From Academic Kids

In mathematics, a square number, sometimes also called a perfect square, is an integer that can be written as the square of some other integer. (In other words, a number whose square root is an integer.) So for example, 9 is a square number since it can be written as 3 × 3. If rational numbers are included, then the ratio of two square integers is also a square number (e.g. 2/3 × 2/3 = 4/9).

The number m is a square number if and only if one can arrange m points in a square:

1 Missing image
Square_number_1.png
Image:Square number 1.png

4 Missing image
Square_number_4.png
Image:Square number 4.png

9 Missing image
Square_number_9.png
Image:Square number 9.png

16 Missing image
Square_number_16.png
Image:Square number 16.png

25 Image:Square number 25.png

The first 50 squares Template:OEIS are:

12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100
112 = 121
122 = 144
132 = 169
142 = 196
152 = 225
162 = 256
172 = 289
182 = 324
192 = 361
202 = 400
212 = 441
222 = 484
232 = 529
242 = 576
252 = 625
262 = 676
272 = 729
282 = 784
292 = 841
302 = 900
312 = 961
322 = 1024
332 = 1089
342 = 1156
352 = 1225
362 = 1296
372 = 1369
382 = 1444
392 = 1521
402 = 1600
412 = 1681
422 = 1764
432 = 1849
442 = 1936
452 = 2025
462 = 2116
472 = 2209
482 = 2304
492 = 2401
502 = 2500


The formula for the nth square number is n2. This is also equal to the sum of the first n odd numbers, as can be seen in the above pictures, where a square results from the previous one by adding an odd number of points (marked as '+'). So for example, 52 = 25 = 1 + 3 + 5 + 7 + 9.

The nth square number can be calculated from the previous two by adding the n-1th square to itself, subtracting the n-2th square number, and adding 2. For example, 2×52 - 42 + 2 = 2×25 - 16 + 2 = 50 - 16 + 2 = 36 = 62

A square number is also the sum of two consecutive triangular numbers. The sum of two consecutive square numbers is a centered square number. Every odd square is also a centered octagonal number.

Lagrange's four-square theorem states that any positive integer can be written as the sum of 4 or fewer perfect squares. 3 squares are not sufficient for numbers of the form 4k(8l + 7). A positive integer can be represented as a sum of two squares precisely if its prime factorization contains no odd powers of primes of the form 4k+3. This is generalized by Waring's problem.

A positive integer that has no perfect square divisors except 1 is called square-free.

Since the product of two negative numbers is positive, and the product of two positive numbers is also positive, it follows that no square number is negative. This has important consequences. It follows, in particular, that no square root can be taken of a negative number within the system of real numbers. This leaves a gap in the real number system that mathematicians fill by postulating imaginary numbers, beginning with i, which by convention is the square root of -1.

Squaring is also useful for statisticians in determining the standard deviation of a population or sample from its mean. Each datum is subtracted from the mean, and the result is squared. Then an average is taken of the new set of numbers (each of which is positive). This average is the variance, and its square root is the standard deviation -- in finance, the volatility.

An easy way to find square numbers is to find two numbers which have a mean of it, 212:20 and 22, and then multiply the two numbers together and add the square of the distance from the mean: 22x20=440+12=441. This works because of the identity

(x-y)(x+y)=x2–y2

known as the difference of two squares. Thus (21–1)(21+1)=212–12=440, if you work backwards.

External links

See also

ko:사각수 it:Numero quadrato sl:kvadratno število ta:வர்க்கம்zh:平方数

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools