Zero divisor

From Academic Kids

In abstract algebra, a non-zero element a of a ring R is a left zero divisor if there exists a non-zero b such that ab = 0. Right zero divisors are defined analogously. An element that is both a left and a right zero divisor is simply called a zero divisor. If the multiplication is commutative, then one does not have to distinguish between left and right zero divisors. A non-zero element that is neither left nor right zero divisor is called regular.

Examples

The ring Z of integers does not have any zero divisors, but in the ring Z2 (where addition and multiplication are carried out component wise), we have (0,1) × (1,0) = (0,0) and so both (0,1) and (1,0) are zero divisors.

In the factor ring Z/6Z, the class of 4 is a zero divisor, since 3×4 is congruent to 0 modulo 6.

An example of a zero divisor in the ring of 2-by-2 matrices is the matrix

<math>\begin{pmatrix}1&1\\

2&2\end{pmatrix}<math> because for instance

<math>\begin{pmatrix}1&1\\

2&2\end{pmatrix}\cdot\begin{pmatrix}1&1\\ -1&-1\end{pmatrix}=\begin{pmatrix}-2&1\\ -2&1\end{pmatrix}\cdot\begin{pmatrix}1&1\\ 2&2\end{pmatrix}=\begin{pmatrix}0&0\\ 0&0\end{pmatrix}<math>

Properties

Left or right zero divisors can never be units, because if a is invertible and ab = 0, then 0 = a−10 = a−1ab = b.

Every non-zero idempotent element a≠1 is a zero divisor, since a2 = a implies a(a − 1) = (a − 1)a = 0. Non-zero nilpotent ring elements are also trivially zero divisors.

In the ring of n-by-n matrices over some field, the left and right zero divisors coincide; they are precisely the nonzero singular matrices. In the ring of n-by-n matrices over some integral domain, the zero divisors are precisely the nonzero matrices with determinant zero.

If a is a left zero divisor, and x is an arbitrary ring element, then xa is either zero or a left zero divisor. The following example shows that the same cannot be said about ax. Consider the set of ∞-by-∞ matrices over the ring of integers, where every row and every column contains only finitely many non-zero entries. This is a ring with ordinary matrix multiplication. The matrix

<math>A = \begin{pmatrix}

0 & 1 & 0 &0&0&\\ 0 & 0 & 1 &0&0&\cdots\\ 0 & 0 & 0 &1&0&\\ 0&0&0&0&1&\\ &&\vdots&&&\ddots \end{pmatrix}<math> is a left zero divisor and B = AT is therefore a right zero divisor. But AB is the identity matrix and hence certainly not a zero divisor. In particular, we can conclude that A cannot be a right zero divisor.

A commutative ring with 0≠1 and without zero divisors is called an integral domain.

Zero divisors occur in Z/nZ if and only if n is composite. When n is prime, there are no zero divisors and this factor ring is, in fact, a field, as every element is a unit.

Zero divisors also occur in the sedenions, or 16- dimensional hypercomplex numbers under the Cayley-Dickson construction.

de:Nullteiler et:Nullitegur es:Divisor de cero fr:Diviseur de zro he:מחלק אפס

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools